SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

ProductZine Day&オンラインセミナーは、プロダクト開発にフォーカスし、最新情報をお届けしているWebメディア「ProductZine(プロダクトジン)」が主催する読者向けイベントです。現場の最前線で活躍されているゲストの方をお招きし、日々のプロダクト開発のヒントとなるような内容を、講演とディスカッションを通してお伝えしていきます。

ProductZine Dayの第3回。オフラインとしては初開催です。

ProductZine Day 2024 Summer

ProductZine Day 2024 Summer

「Developers Summit 2024」レポート(AD)

AIエンジニア必見! 実践から見る、マルチモーダルRAG最前線

【16-C-5】マルチモーダルRAGの社会実装への技術アプローチ

技術の積み重ねでたどり着いたマルチモーダルRAG

 マルチモーダルRAGの歴史を語るにあたり、鈴木氏は、先に挙げた構成要素について、1つずつ歴史を振り返った。

画像の特徴量抽出

 かつて画像の特徴量抽出は目視による手作業で行っていた。その後、2004年にSIFTが登場し、画像の特徴量(キーポイント)を抜き出せるようになった。2005年にはHOGが登場。これにより輪郭を特徴量として抜き出せるようになった。そして2012年のCNNによってディープラーニングの研究が盛んとなり、2020年にはGoogleのViT(Vision Transformer)が登場した。最後は2021年。Open AIの出したCLIPで画像とテキストが結びつき、マルチモーダルRAGの実現に大きく近づいた。

テキストの特徴量抽出

 最初は1972年のtf-idfにまでさかのぼる。これは単語の頻出度合いによって、その重要度を測るものだが、この技術が応用されて1994年にBM25が登場する。さらにその後進展したディープラーニングの流れを受け、2013年にはベクトル化の技術を取り入れたWord2Vecが登場。そして2018年、GoogleのTransformerのエンコーダをベースにしたBERTへとつながった。

テキストの生成

 2013年のディープラーニングのブレイクスルーによって知名度を上げたRNNだが、実はその歴史は古く、1986年に登場していた。とはいえ、アーキテクチャそのものは存在していたものの、メモリやコンピューティングのリソース不足から実現には至っていなかったようだ。1997年にはLSTMが登場。2013年NN、2017年Transformer、2021年CLIPへと続く。

Open AIのモデル

 Open AIのモデルは、2018年GPT、2019年GPT-2、2020年GPT-3、2022年ChatGPTとエンベディングモデルのada-002、そして2023年GPT-4/GPT-4vという変遷してきた。

 「これらのピースがすべてつながって、マルチモーダルRAGに結びついている」(鈴木氏)

次のページ
マルチモーダルRAGを実現する2つの手法とは?

関連リンク

この記事は参考になりましたか?

「Developers Summit 2024」レポート連載記事一覧

もっと読む

この記事の著者

野本 纏花(ノモト マドカ)

 フリーライター。IT系企業のマーケティング担当を経て2010年8月からMarkeZine(翔泳社)にてライター業を開始。2011年1月からWriting&Marketing Company 518Lab(コトバラボ)として独立。共著に『ひとつ上のFacebookマネジメント術~情報収集・人脈づくり...

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

提供:株式会社ギブリー

【AD】本記事の内容は記事掲載開始時点のものです 企画・制作 株式会社翔泳社

この記事は参考になりましたか?

この記事をシェア

ProductZine(プロダクトジン)
https://productzine.jp/article/detail/2506 2024/04/10 12:00

おすすめ

アクセスランキング

アクセスランキング

イベント

ProductZine Day&オンラインセミナーは、プロダクト開発にフォーカスし、最新情報をお届けしているWebメディア「ProductZine(プロダクトジン)」が主催する読者向けイベントです。現場の最前線で活躍されているゲストの方をお招きし、日々のプロダクト開発のヒントとなるような内容を、講演とディスカッションを通してお伝えしていきます。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング